Nice. This seems to be the future that solves a lot of problems. Right now in Australia, we’re seriously entertaining building nuclear power plants for the first time ever, to provide base load power that renewables allegedly can’t. Large sodium batteries could help us avoid that.
The LNP doesn’t have a legitimate interest in transitioning to nuclear power or they would’ve begun over the last decade or so that they were in power.
Instead they’ve proposed - now that they’re in opposition - a technology which is banned at the Federal level and individually at the state level, because they know that gives them years of lead time before they ever have to begin the project.
On top of that, all of the proposed sites are owned by companies who’ve already begun transitioning to renewable generation or renewable storage, and most of them are in states in which the state Premiers have publicly stated that they will not consider overturning their bans on nuclear power.
It’s not just base load, turbines also provide grid stability. All the quick fluctuations as people turn things on and off are hard to load balance with solar, wind, or battery.
A big spinning turbine has a lot of inertia. That helps keep thr grid at a constant frequency. As solar gets bigger and bigger we might need big solar powdered flywheel generators just to stabilize the grid.
Inverters could also provide “virtual inertia” which help to stabilize the grid frequency. However most of today’s inverters don’t have it, or it’s disabled.
This means we don’t need solar powered flywheels, which are inherently inefficient, we just need software (edit: and batteries of course) more or less.
Partially. Inverters providing virtual inertia is good but has the problem of still being active and reactive. It helps and is cheaper and more efficient than flywheels.
Flywheels and turbines however provide a very sticky frequency. They help out a lot with stability and give inverters time to respond.
Think balancing a stick on your hand vs anchoring it in clay.
If we take enough turbines off line we are still probably going to need some mechanical power stabilization no matter how inefficient.
But yeah I think we are going to see a blend using as much electrical and as little mechanical as possible.
The main issue with using batteries for load balancing is the massive resource investment required for them at a grid level, BUT that’s more of a concern with lithium based batteries due to a number of factors. Sodium batteries use way more easily accessible and abundant materials.
NGL I’m hella fuckin hyped about sodium batteries vs lithium batteries.
Nice. This seems to be the future that solves a lot of problems. Right now in Australia, we’re seriously entertaining building nuclear power plants for the first time ever, to provide base load power that renewables allegedly can’t. Large sodium batteries could help us avoid that.
The LNP doesn’t have a legitimate interest in transitioning to nuclear power or they would’ve begun over the last decade or so that they were in power.
Instead they’ve proposed - now that they’re in opposition - a technology which is banned at the Federal level and individually at the state level, because they know that gives them years of lead time before they ever have to begin the project.
On top of that, all of the proposed sites are owned by companies who’ve already begun transitioning to renewable generation or renewable storage, and most of them are in states in which the state Premiers have publicly stated that they will not consider overturning their bans on nuclear power.
It’s not just base load, turbines also provide grid stability. All the quick fluctuations as people turn things on and off are hard to load balance with solar, wind, or battery. A big spinning turbine has a lot of inertia. That helps keep thr grid at a constant frequency. As solar gets bigger and bigger we might need big solar powdered flywheel generators just to stabilize the grid.
Inverters could also provide “virtual inertia” which help to stabilize the grid frequency. However most of today’s inverters don’t have it, or it’s disabled.
This means we don’t need solar powered flywheels, which are inherently inefficient, we just need software (edit: and batteries of course) more or less.
https://www.mdpi.com/2076-3417/7/7/654
Partially. Inverters providing virtual inertia is good but has the problem of still being active and reactive. It helps and is cheaper and more efficient than flywheels.
Flywheels and turbines however provide a very sticky frequency. They help out a lot with stability and give inverters time to respond.
Think balancing a stick on your hand vs anchoring it in clay.
If we take enough turbines off line we are still probably going to need some mechanical power stabilization no matter how inefficient.
But yeah I think we are going to see a blend using as much electrical and as little mechanical as possible.
deleted by creator
deleted by creator
deleted by creator
Lol,
Batteries are perfect for load balancing.
Please, know your facts
The main issue with using batteries for load balancing is the massive resource investment required for them at a grid level, BUT that’s more of a concern with lithium based batteries due to a number of factors. Sodium batteries use way more easily accessible and abundant materials.
NGL I’m hella fuckin hyped about sodium batteries vs lithium batteries.
Batteries can’t stabilise frequency. If the frequency changes too much, the grid will go down.
You literally need a giant spinning turbine for this.
It’s pretty basic energy engineering, and is not related to load balancing.
Removed by mod
Sounds like a way to waste loads of money and keep people on fossil fuels.
Must be way cheaper to build more batteries and build out inertia. (Would still need backup power at this point though).
Reminds me of Elon’s Hyperloop. Not intended to actually work, but instead be a distraction to deflate interest in public transportation.