• WolfLink@sh.itjust.works
    link
    fedilink
    arrow-up
    37
    ·
    edit-2
    3 months ago

    No one has given a real answer yet, and I’ve worked with these before, so I’ll explain. The short answer is it has to do with the logistics of cooling something to near absolute zero.

    The main component of a quantum computer is a tiny microchip, maybe a few centimeters across. The big chandelier is for cooling and interacting with the quantum computer. (Compare to a desktop computer which has a small CPU chip but most of the computer is for cooling, powering, or otherwise supporting that CPU).

    Towards the center of the chandelier thing there is a mechanism called a “dilution refrigerator” which uses weird properties of liquid helium to cool the quantum chip to about 15mK above absolute zero. There are often other refrigeration techniques at work and the dilution fridge does the last step of cooling.

    The twisting golden tubes are microwave waveguides. Essentially they are wires that carry signals to and from the quantum computing chip. The twists are there because there is a lot of thermal contraction that happens when cooling from room temperature to near absolute zero, and the loops give the tubes some slack to contract.

    Not shown in pictures as often because it’s less exciting, but the whole chandelier thing is put in a big metal cylinder, and that cylinder is within another cylinder, like a Russian nesting doll. Sometimes there may even be a 3rd layer. The air gets pumped out of the cylinders so it’s a vacuum inside. The multiple layers of cylinders are needed because the black body radiation from the outermost layer (which will be at room temperature) would be too much incoming energy to keep the qubits cold enough.

    Also not shown is this whole thing is connected to an elaborate system of vacuum pumps, other refrigeration machines, usually a box of electronics for signal generation, and a classical computer (a standard desktop computer) used to control everything.

    Note that not all quantum computer types use this kind of chandelier thing, only ones that need the near-absolute-zero temperature, such as superconducting qubits (trapped ion, neutral atom, and photonic quantum computers use very different setups).

  • AngryPancake@sh.itjust.works
    link
    fedilink
    arrow-up
    21
    ·
    3 months ago

    Just wanted to mention at this point that the quantum computers in this post are the so-called superconducting quantum computers. There are also other architectures like ion and neutral atom quantum computers which are basically steel tubes with viewports that contain a ultra high vacuum. Lasers are used to control the ions or atoms.

    There’s also photon quantum computers, but they are even more different and not in a really advanced stage yet.

  • profdc9@lemmy.world
    link
    fedilink
    arrow-up
    20
    arrow-down
    1
    ·
    3 months ago

    Quantum states are incredibly fragile and can be disturbed with even the slightest interaction with the environment (called decoherence). These devices are cooled and isolated to the most extreme degrees possible and still at present decoherence severely limits the computations that can be performed.

  • Ogmios@sh.itjust.works
    link
    fedilink
    arrow-up
    17
    ·
    3 months ago

    The whole environment needs to be as clean as humans are capable of making it, utilizing the most advanced technology available, so every nanometer of the machine is in immaculate condition.

  • Mango@lemmy.world
    link
    fedilink
    arrow-up
    3
    arrow-down
    34
    ·
    3 months ago

    Because the pictures are there so you’ll think “wow science” and give them money.